53 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Содержание

Пути всасывания аминокислот в кишечнике

Всасывание аминокислот в кишечнике

Вса­сывание L-аминокислот (но не D) — активный процесс, в результате которого аминокислоты переносятся через кишечную стенку от слизистой её поверхности в кровь.

Известно пять специфических транспортных систем, каждая из которых функционирует для переноса определённой группы близких по строению аминокислот:

1. нейтральных, короткой боковой цепью (аланин, серии, треонин);

2. нейтральных, с длинной или разветвлённой боковой цепью (валин, лейцин, изолейцин);

3. с катионными радикалами (лизин, аргинин);

4. с анионными радикалами (глутаминовая и аспарагиновая кислоты);

5. иминокислот (пролин, оксипролин).

Существуют 2 основных механизма переноса аминокислот: симпорт с натрием и γ-глутамильный цикл.

1. Симпорт аминокислот с Na+.

Симпортом с Nа+ переносятся аминокислоты из первой и пятой группы, а также метионин.

L-аминокислота поступает в энтероцит путём симпорта с ионом Na+. Далее специфическая транслоказа переносит ами­нокислоту через мембрану в кровь. Обмен ионов натрия меж­ду клетками осуществляется путём первично-активного транс­порта с помощью Na+, К+-АТФ-азы.

2. γ-Глутамильный цикл.

γ-глутамильный цикл переносит некоторые нейтральные аминокислоты (фенилаланин, лейцин) и аминокислоты с катион­ными радикалами (лизин) в кишечнике, почках и, по-ви­димому, мозге.

В этой системе участвуют 6 ферментов, один из которых находится в клеточной мембране, а остальные — в цитозоле. Мембранно-связанный фермент γ-глутамилтрансфераза (гликопротеин) катализирует перенос γ-глутамильной группы от глутатиона на транспортируемую аминокислоту и последую­щий перенос комплекса в клетку. Амнокислота отщепляется от у-глутамильного остатка под действием фермента у-глутамилциклотрансферазы.

Дипептид цистеинилглицин расщепляется под действием пептидазы на 2 аминокислоты — цистеин и глицин. В результате этих 3 реакций про­исходит перенос одной молекулы аминокислоты в клетку (или внутриклеточную структуру). Сле­дующие 3 реакции обеспечивают регенерацию глутатиона, благодаря чему цикл повторяется многократно. Для транспорта в клетку одной мо­лекулы аминокислоты с участием у-глутамильного цикла затрачиваются 3 молекулы АТФ.

Поступление аминокислот в организм осуществляется двумя путя­ми: через воротную систему печени, ведущую прямо в печень, и по лимфатическим сосудам, сообщающимся с кровью через грудной лимфа­тический проток. Максимальная концентрация аминокислот в крови достигается через 30—50 мин после приёма белковой пищи (углеводы и жиры замедляют всасывание аминокислот). Аминокислоты при всасывании конкурируют друг с другом за специфические участки связывания. Например, всасывание лейцина (если концентрация его достаточно высока) уменьшает всасывание изолейцина и валина.

ВСАСЫВАНИЕ АМИНОКИСЛОТ В КИШЕЧНИКЕ

Вса­сывание L-аминокислот (но не D) — активный процесс, в результате которого аминокислоты переносятся через кишечную стенку от слизистой её поверхности в кровь.

Известно пять специфических транспортных систем, каждая из которых функционирует для переноса определённой группы близких по строению аминокислот:

1. нейтральных, короткой боковой цепью (аланин, серии, треонин);

2. нейтральных, с длинной или разветвлённой боковой цепью (валин, лейцин, изолейцин);

3. с катионными радикалами (лизин, аргинин);

4. с анионными радикалами (глутаминовая и аспарагиновая кислоты);

5. иминокислот (пролин, оксипролин).

Читать еще:  Понос первый признак беременности форум

Существуют 2 основных механизма переноса аминокислот: симпорт с натрием и γ-глутамильный цикл.

1. Симпорт аминокислот с Na + .

Симпортом с Nа + переносятся аминокислоты из первой и пятой группы, а также метионин.

L-аминокислота поступает в энтероцит путём симпорта с ионом Na +. Далее специфическая транслоказа переносит ами­нокислоту через мембрану в кровь. Обмен ионов натрия меж­ду клетками осуществляется путём первично-активного транс­порта с помощью Na + , К + -АТФ-азы.

2. γ-Глутамильный цикл.

γ-глутамильный цикл переносит некоторые нейтральные аминокислоты (фенилаланин, лейцин) и аминокислоты с катион­ными радикалами (лизин) в кишечнике, почках и, по-ви­димому, мозге.

В этой системе участвуют 6 ферментов, один из которых находится в клеточной мембране, а остальные — в цитозоле. Мембранно-связанный фермент γ-глутамилтрансфераза (гликопротеин) катализирует перенос γ-глутамильной группы от глутатиона на транспортируемую аминокислоту и последую­щий перенос комплекса в клетку. Амнокислота отщепляется от у-глутамильного остатка под действием фермента у-глутамилциклотрансферазы.

Дипептид цистеинилглицин расщепляется под действием пептидазы на 2 аминокислоты — цистеин и глицин. В результате этих 3 реакций про­исходит перенос одной молекулы аминокислоты в клетку (или внутриклеточную структуру). Сле­дующие 3 реакции обеспечивают регенерацию глутатиона, благодаря чему цикл повторяется многократно. Для транспорта в клетку одной мо­лекулы аминокислоты с участием у-глутамильного цикла затрачиваются 3 молекулы АТФ.

Поступление аминокислот в организм осуществляется двумя путя­ми: через воротную систему печени, ведущую прямо в печень, и по лимфатическим сосудам, сообщающимся с кровью через грудной лимфа­тический проток. Максимальная концентрация аминокислот в крови достигается через 30—50 мин после приёма белковой пищи (углеводы и жиры замедляют всасывание аминокислот). Аминокислоты при всасывании конкурируют друг с другом за специфические участки связывания. Например, всасывание лейцина (если концентрация его достаточно высока) уменьшает всасывание изолейцина и валина.

Реакции декарбоксилирования аминокислот: образование биогенных аминов, биологическое значение. Синтез, ГАМК, серина, аминоэтанола, холина, гистамина в тучных клетках соединительной ткани, значение биогенных аминов. Реакции дезаминирования: в организме человека, биологическое значение. Пути использования безазотистого остатка аминокислот: (глюконеогенез, ЦТК).

ДЕКАРБОКСИЛИРОВАНИЕ АМИНОКИСЛОТ И ИХ ПРОИЗВОДНЫХ

Некоторые АК и их производные могут подвергаться декарбоксилированию – отщеплению α-карбоксильной группы. У млекопитающих декарбоксилируются: три, тир, вал, гис, глу, цис, арг, орнитин, SAM, ДОФА, 5-окситриптофан и т.д. Реакцию необратимо катализируют декарбоксилазы, которые содержат в активном центре пиридоксальфосфат. Механизм реакции похож на реакцию переаминирования.

Продуктами реакции являются СО2 и биогенные амины, выполняющие регуляторные функции (гормоны, тканевые гормоны, нейромедиаторы).

Серотонин

Серотонин образуется из три в надпочечниках, ЦНС и тучных клетках.

Серотонин – возбуждающий нейромедиатор средних отделов мозга (проводящих путей) и гормон. Стимулирует сокращение гладкой мускулатуры, вазоконстриктор, регулирует АД, температуру тела, дыхание, антидепрессант.

ГАМК

ГАМК образуется и разрушается в ГАМК-шунте ЦТК в высших отдела мозга. Он имеет очень высокую концентрацию.

ГАМК – тормозной нейромедиатор (повышает проницаемость постсинаптических мембран для К + ), повышает дыхательную активность нервной ткани, улучшает кровоснабжение головного мозга.

Гистамин

Гистамин образуется в тучных клетках. Секретируется в кровь при повреждении ткани, развитии иммунных и аллергических реакций.

Гистамин – медиатор воспаления, аллергических реакций, пищеварительный гормон:

1. стимулирует секрецию желудочного сока, слюны;

2. повышает проницаемость капилляров, расширение сосудов, покраснение кожи, вызывает отеки, снижает АД (но увеличивает внутричерепное давление, вызывает головную боль);

3. сокращает гладкую мускулатуру легких, вызывает удушье;

4. вызывает аллергическую реакцию;

6. медиатор боли.

Дофамин

Дофамин образуется (фен → тир → ДОФА → дофамин) в мозге и мозговом веществе надпочечников.

Дофамин – нейромедиатор среднего отдела мозга.

Всасывание аминокислот.

Происходит путем активного транспорта с участием переносчиков. Максимальная концентрация аминокислот в крови достигается через 30–50 мин после приема белковой пищи. Перенос через щеточную каемку осуществляется целым рядом переносчиков, многие из которых действую при участии Na + -зависимых механизмов симпорта. Причем аминокислоты конкурируют друг с другом за специфические участки связывания. Выяснено, что существуют транспортные системы, переносящие аминокислоты определенного строения: нейтральные с небольшим радикалом, нейтральные с объемным радикалом, кислые, основные и иминокислоты.

Читать еще:  При колоноскопии смотрят тонкий кишечник

В настоящее время, расшифрован механизм транспорта аминокислот в клетки кишечника, мозга, почек, получивший название g-глутамильного цикла Майстера, ключевым ферментом которого является g-глутамилтрансфераза.

Всосавшиеся аминокислоты попадают в портальный кровоток и, следовательно, в печень, а затем в общий кровоток. Освобождается кровь от свободных аминокислот очень быстро – уже через 5 мин 85–100% их оказывается в тканях. Особенно интенсивно аминокислоты поглощаются печенью и почками.

Данный текст является ознакомительным фрагментом.

Читать книгу целиком

Похожие главы из других книг

Глава 496. Почему кодируемых аминокислот двадцать? (XII)

Глава 496. Почему кодируемых аминокислот двадцать? (XII) Неискушенному Читателю может показаться, что элементы машины генетического кодирования описаны в предыдущей главе настолько детально, что к концу чтения он стал даже как-то утомляться, чувствуя, что несколько

Глава 496. Почему кодируемых аминокислот двадцать? (XII)

Глава 496. Почему кодируемых аминокислот двадцать? (XII) Неискушенному Читателю может показаться, что элементы машины генетического кодирования описаны в предыдущей главе настолько детально, что к концу чтения он стал даже как-то утомляться, чувствуя, что несколько

Активация аминокислот

Всасывание моносахаридов в кишечнике

Всасывание моносахаридов в кишечнике Всасывание моносахаридов из кишечника происходит путем облегченной диффузии с помощью специальных белков-переносчиков (транспортеров). Кроме того, глюкоза и галактоза транспортируются в энтероциты путем вторично-активного

Липиды пищи, их переваривание и всасывание.

Липиды пищи, их переваривание и всасывание. Взрослому человеку требуется от 70 до 145 г липидов в сутки в зависимости от трудовой деятельности, пола, возраста и климатических условий. При рациональном питании жиры должны обеспечивать не более 30% от общей калорийности

Наследственные нарушения транспорта аминокислот

Наследственные нарушения транспорта аминокислот Болезнь Хартнупа – нарушение всасывания триптофана в кишечнике и его реабсорбции в почечных канальцах. Так как триптофан служит исходным продуктом для синтеза витамина РР, то основные проявления болезни Хартнупа –

Превращение аминокислот микрофлорой кишечника

Превращение аминокислот микрофлорой кишечника Микроорганизмы кишечника располагают набором ферментативных систем, отличных от соответствующих ферментов тканей организма человека и катализирующих самые разнообразные превращения пищевых аминокислот и не

Пути обмена аминокислот в тканях

Пути обмена аминокислот в тканях Аминокислоты – это бифункциональные соединения, содержащие аминную и карбоксильную группу. Реакции по этим группам являются общими для различных аминокислот. К ним относят:1. по аминной группе – реакции дезаминирования и

Трансаминирование аминокислот

Трансаминирование аминокислот Трансаминирование – реакции переноса a-аминогруппы с аминокислоты на a-кетокислоту, в результате чего образуются новая кетокислота и новая аминонокислота. Реакции катализируют ферменты аминотрансферазы. Это сложные ферменты, коферментом

Дезаминирование аминокислот

Дезаминирование аминокислот Дезаминирование аминокислот – реакция отщепления a-аминогруппы от аминокислоты с выделением аммиака. Различают два типа реакций дезаминирования: прямое и непрямое.Прямое дезаминирование – непосредственное отщепление аминогруппы от

Непрямое дезаминирование аминокислот

Непрямое дезаминирование аминокислот Большинство аминокислот не способно дезаминироваться в одну стадию, подобно глутамату. Аминогруппы таких аминокислот перносятся на ?-кетоглутарат с образованием глутаминовой кислоты, которая затем подвергается прямому

Декарбоксилирование аминокислот

Декарбоксилирование аминокислот Некоторые аминокислоты и их производные могут подвергаться декарбоксилированию. Реакции декарбоксилирования необратимы и катализируются ферментами декарбоксилазами, нуждающимися в пиридоксальфосфате в качестве кофермента.

Пути катаболизма углеродного скелета аминокислот

Пути катаболизма углеродного скелета аминокислот Трансаминирование и дезаминирование аминокислот ведет к образованию безазотистых углеродных скелетов аминокислот – ?-кетокислот. В состав белков входят 20 аминокислот, различающихся по строению углеводородного

Читать еще:  Свечи для очищения кишечника вместо клизмы

Глава 25. Метаболизм отдельных аминокислот

Глава 25. Метаболизм отдельных аминокислот Метаболизм метионина Метионин – незаменимая аминокислота. Метильная группа метионина – мобильный одноуглеродный фрагмент, используемый для синтеза ряда соединений. Перенос метильной группы метионина на соответствующий

Роль печени в обмене аминокислот и белков

Роль печени в обмене аминокислот и белков Печень играет центральную роль в обмене белков и других азотсодержащих соединений. Она выполняет следующие функции:1. синтез специфических белков плазмы: — в печени синтезируется: 100 % альбуминов, 75 – 90 % ?-глобулинов, 50 %

Обмен свободных аминокислот в головном мозге

Обмен свободных аминокислот в головном мозге Аминокислоты играют важную роль в метаболизме и функционировании ЦНС. Это объясняется не только исключительной ролью аминокислот как источников синтеза большого числа биологически важных соединений, таких как белки,

Всасывание аминокислот

Всасывание аминокислот в кишечнике

Всасывание L-аминокислот (но не D-) — это активный процесс, в результате которого аминокислоты переносятся через кишечную стенку от слизистой её поверхности в кровь.

Известно пять специфических транспортных систем, каждая из которых функционирует для переноса определённой группы близких по строению аминокислот:

1) нейтральных, короткой боковой цепью (аланин, серии, треонин);

2) нейтральных, с длинной или разветвлённой боковой цепью (валин, лейцин, изолейцин);

3) с катионными радикалами (лизин, аргинин);

4) с анионными радикалами (глутаминовая и аспарагиновая кислоты);

5) иминокислот (пролин, оксипролин).

Механизм переноса аминокислот в эпителиальные клетки кишечника

Существуют 2 основных механизма переноса аминокислот: 1) симпорт с натрием и 2) γ-глутамильный цикл.

1. Симпорт аминокислот с Na+.

Симпортом с Nа+ переносятся аминокислоты из первой и пятой группы, а также метионин.

L-аминокислота поступает в энтероцит путём симпорта с ионом Na+. Далее специфическая транслоказа переносит аминокислоту через мембрану в кровь. Обмен ионов натрия между клетками осуществляется путём первично-активного транспорта с помощью Na+,К+-АТФ-азы. Таким образом, для такого переноса аминокислот используется энергия электрохимического потенциала ионов натрия, запасённая им в процессе выдворения его из клетки натрий-калиевым насосом (Na+,К+-АТФ-азой) против градиента концентрации. Энтероциты в этом используют тот же механизм, что и нейроны при формировании потенциала покоя.

2. γ-Глутамильный цикл.

Более изощрённый по сравнению с симпортом γ-глутамильный цикл переносит некоторые нейтральные аминокислоты (фенилаланин, лейцин) и аминокислоты с катионными радикалами (лизин) в кишечнике, почках и, по-видимому, мозге.

В этой системе участвуют 6 ферментов, один из которых находится в клеточной мембране, а остальные — в цитозоле. Мембранно-связанный фермент γ-глутамилтрансфераза (гликопротеин) катализирует перенос γ-глутамильной группы от глутатиона на транспортируемую аминокислоту и последующий перенос комплекса в клетку. Аминокислота отщепляется от у-глутамильного остатка под действием фермента у-глутамилциклотрансферазы.

Дипептид цистеинилглицин расщепляется под действием пептидазы на 2 аминокислоты — цистеин и глицин. В результате этих 3-х реакций происходит перенос одной молекулы аминокислоты в клетку (или внутриклеточную структуру). Следующие 3 реакции обеспечивают регенерацию глутатиона, благодаря чему цикл повторяется многократно. Для транспорта в клетку одной молекулы аминокислоты с участием у-глутамильного цикла затрачиваются 3 молекулы АТФ. Важно отметить эти заметные потери энергии, затраченной на всасывание аминокислот при белковом питании.

Поступление аминокислот в организм осуществляется двумя путями: через воротную систему печени, ведущую прямо в печень, и по лимфатическим сосудам, сообщающимся с кровью через грудной лимфатический проток. Максимальная концентрация аминокислот в крови достигается через 30—50 мин после приёма белковой пищи (углеводы и жиры замедляют всасывание аминокислот). Аминокислоты при всасывании конкурируют друг с другом за специфические участки связывания. Например, всасывание лейцина (если концентрация его достаточно высока) уменьшает всасывание изолейцина и валина.

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector